unsloth/Qwen2-7B-Instruct

Warm
Public
7.6B
FP8
131072
License: apache-2.0
Hugging Face
Overview

Overview

unsloth/Qwen2-7B-Instruct is a 7.6 billion parameter instruction-tuned model based on the Qwen2 architecture, specifically optimized by Unsloth for enhanced fine-tuning efficiency. Unsloth's integration allows for 2x faster fine-tuning and 58% less memory usage compared to standard methods, making it highly accessible for developers, even on free-tier GPU resources like Google Colab Tesla T4s.

Key Capabilities

  • Accelerated Fine-tuning: Leverages Unsloth's optimizations for significantly faster training times.
  • Reduced Memory Footprint: Enables fine-tuning with substantially less GPU memory, broadening accessibility.
  • Instruction-Tuned: Designed to follow instructions effectively for various NLP tasks.
  • Export Flexibility: Supports exporting finetuned models to GGUF, vLLM, or directly uploading to Hugging Face.

Good For

  • Developers looking to quickly and efficiently fine-tune a Qwen2-7B model on custom datasets.
  • Projects requiring cost-effective model adaptation due to limited GPU resources.
  • Experimentation and rapid prototyping of instruction-following LLMs.