unsloth/gemma-7b

Loading
Public
8.5B
FP8
8192
License: apache-2.0
Hugging Face
Overview

Unsloth Gemma-7b: Efficient Fine-tuning

This model is an 8.5 billion parameter variant of Google's Gemma architecture, specifically optimized by Unsloth for enhanced fine-tuning performance. Unsloth's optimizations enable 2.4x faster fine-tuning and 58% less memory usage compared to traditional methods for Gemma 7b.

Key Capabilities

  • Rapid Fine-tuning: Achieves substantial speed improvements for training Gemma models.
  • Memory Efficiency: Significantly reduces GPU memory requirements, making fine-tuning accessible on more modest hardware.
  • Export Flexibility: Fine-tuned models can be exported to GGUF, vLLM, or directly uploaded to Hugging Face.
  • Beginner-Friendly: Accompanied by easy-to-use Colab notebooks for various fine-tuning tasks, including conversational and text completion.

Good For

  • Developers and researchers seeking to fine-tune Gemma models quickly and with limited GPU resources.
  • Experimenting with different datasets and tasks without extensive computational overhead.
  • Creating custom Gemma variants for specific applications, such as chatbots or text generation.